3

Ab jetzt sei K ein Körper.

Matrizen und Lineare Gleichungssysteme $K \in \mathbb{R}$ ein Körper.

Lineare Gleichungssysteme

Definition: Ein System von Gleichungen $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$ für alle $1 \leq i \leq m$ mit natürlichen Zahlen mund n, das heisst, ein Schema

$$\begin{bmatrix} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m \end{bmatrix}$$

für gegebene $a_{ij}, b_i \in K$ und zu bestimmenden Variablen x_j , heisst *lineares Gleichungssystem* (kurz LGS) *"" iber K.* Sind alle $b_i = 0$, so heisst das Gleichungssystem homogen.

Definition: Elementare Zeilenumformungen eines linearen Gleichungssystems sind:

- (a) das Addieren von $\lambda \in K$ mal einer Zeile zu einer anderen,
- (b) das Multiplizieren einer Zeile mit $\lambda \in K^{\times}$,
- (c) das Vertauschen zweier Zeilen.

Fakt: Jede elementare Zeilenumformung ist umkehrbar, nämlich jeweils durch

- (a) das Addieren von $-\lambda$ mal derselben Zeile zu derselben anderen,
- (b) das Multiplizieren derselben Zeile mit λ^{-1} ,
- das nochmalige Vertauschen derselben Zeilen.

Für das Gleichungssystem insgesamt erhalten wir daher eine Äquivalenzumformung.

Definition: Ein Gleichungssystem heisst *in Zeilenstufenform*, wenn die von Null verschiedenen Terme in jeder Zeile echt später beginnen als in der Zeile davor.

Satz: (Gauss-Elimination) Jedes lineare Gleichungssystem lässt sich durch eine Folge elementarer Zeilenumformungen in Zeilenstufenform bringen.

Benein

3 Ente Spalke ist Will = OK nade Indelkin

1 Lout walle i mit ain #0.

3) Falls is 1, vertandre teile 1, i =0 0 B dA an +0.

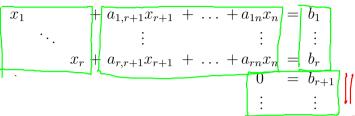
(1) For jeds i>1 addiere - an mal die 1-te Zeile zu iten Zeile.

Dh.: $a_{11}x_{11}$ $a_{21}=...=a_{m1}=0$

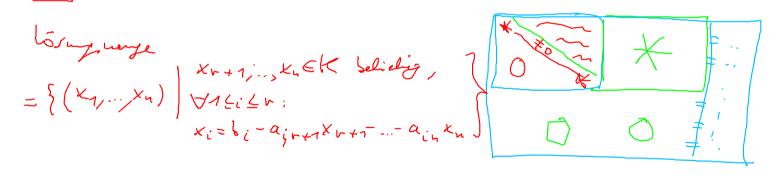
6) Indulction wach n: Kam amelinen dass * in Wilen Anferfor bring

7) Dans it des garge Las

Satz: Jedes lineare Gleichungssystem lässt sich durch eine Folge elementarer Zeilenoperationen und Vertauschen von Spalten (also Vertauschen von Variablen) in die folgende Form bringen für ein gewisses $0 \le r \le \min\{m, n\}$:



Ist dann $b_j \neq 0$ für ein j > r, so hat das Gleichungssystem keine Lösung. Andernfalls erhält man alle Lösungen, indem man die Variablen $x_{r+1}, \ldots, x_n \in K$ beliebig wählt und dann $x_i := b_i - a_{i,r+1}x_{r+1} - \ldots - a_{in}x_n$ setzt für alle $1 \leq i \leq r$.



y = 2 + 1 x = 2 - 22= $\begin{cases} (2 - 2 + 1, 2, 1) \mid 2 \in K \end{cases}$

W = 1